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1. Introduction—. .—— —.— —

Plasma particle-in-cell (PIC)  codes [~irdsall  and
I,angdon,1985] have become standard research tools in
plasma physics research. A PIC  code models a plasma
as many test particles and follows the evolution of the
orbits of individual test particles in the self-consistent
electromagnetic fields. Each time step in a PIC  code
consists of two major stages: the particie push to up-
date the particle orbits and calculate the new charge
and/or current density, and the field solve to update t}le
electromagnetic fields. Two particle- grid interpolation
steps are used to link particle orbits and the field conl-
ponents: a “gather” step is used to interpolate fields
from grid points to particle positions and a “scatter”
step to deposit the charge/current of each particle to
grid points.

Most existing PIC codes are based on the use of or-
thogonal grid (Cartesian or cylindrical). This restricted
their applications to problems with simple geometries.
In this paj)er we describe a new electromagnetic PIC
algorithm that uses body-fitted curvilinear coordinates
for large-scale sitnulations  of problems involving con~-
plex geometries (e.g. high power microwave devices) on
parallel supercomputers.

Our numerical formulation is based orl the use of de-
formable hexahedral  cells which are logically connected.
we define a physical space where tl~c cells can \JC! de-
formed in shape to body-fit complex geometries a~ld a
logical space consisting of a Cartesiatl  mesh I;acb grid
point in the physical space is mapped or~e-toone  to the
Cartesian mesh irl the logical space. All pl~ysical quar~-
tities  are computed in the physical space I[owcvcr,  ~]ar-
ticle tracing as well M the gather/scatter are I)erfornled
in the logical space.
— - — —
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We find that the deformable hexahedral  grid is suftl-
cient to handel  a wide variety of complex geometries.
I’or irlstance,  shown in I?ig.1 is a cylindrical domain
constructed using deformed hexahedral  cells. There are
several advantages of using the deformable hexahedral
cells than using more sophisticated grids, such aa tetra-
hedral cells or unstructured grids. The major advantage
is that the logically Cartesian connection of the cells
preserves the nearest neighbor relationships and avoids
the cornplicatiorls  of indirect addressing of unstructured
grids. The location in memory of quantities defined in
neighboring cells can be easily computed without nlen~-
ory references. (l’his  is in contrast with an instructed
grid where the neighbors of a given cell must be found
by lookups in a table.) I[ence, particles can be located
almost as efficiently as that in an orthogonal grid PIC
code. for gather and scatter calculations. This is es-
pecially important for large scale simulations because a
1’1(3 code typically speuts  most of its computing time
to push particles. ‘1’he use of a Cartesian logical space
also significantly simplifies the procedures for j)article-
grid interpolation on nomorthogonal  grids. Gather and
scatter algorithms developed for Cartesiau  grid baaed
electromagnetic PIC codes (for example, the rigorous
charge conservation current deposit) maybe utilized di-
rectly. (For tetrahedral and uustructed  grids, these i[l -
terpolatious  can be very complicated.) Firlally, the inl-
plementation  of the code on to parallel supercoruputers
is almost identical to that of the Cartesian grid based
parallel l;M I’IC code [Wang et al.,1995].

l’he  Ilumcrical  algoritlirn  is described in %ction  2. In
Section 3, we perform numerical tests of the code and
study the accuracy of the algorithm lihe perforlnarlcc
of the code on a hll M 1) parallel  SU])erCOrl”l~JUt~r  is dis-
cussed in Section 4. Section 5 corltaitls a slrrnrnary  ar~d
conclusions.
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2. Algorithm.._ .——-—  —.-

Governing Equations

‘The governing equations in an electromagnetic PIC
code are Newton’s second law for individual particle tra-
jectories:

d-pnv— =
dt

F=@-+vx~) (1)

dx
Tt”v

where yfn = m/@- u2/c2 1s the relativistic mass of
the plasma particle, and the Maxwell’s equations for the
macroscopic electromagnetic field:
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V.B = o

V.E = p

The charge density p and the current density J are
derived from the motion of plasma particles and satisfy
the charge continuity equation:

ap

%
==-V. J (3)

Note if this charge conservation condition can be satis-
fied rigorously numerically, one can update the electr~
Inagnctic  field using only the two curl Maxwell’s equa-
tions.

1’o obtain a numerical solution, the curl Maxwell
equations arc recast. in the integral form by integrating
curl equations over a surface S,

at
/ !11. ds = –C E.cll (4)
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and the the divergence equations arid the conscrvatio~l
of charge equation over a volume V,
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The physical space flp is discretized into a structured
grid of deformable hcxahcdral  cells which are logically
Cartesian. ‘1’he cells in the physical space may be dis-
torted to fit complex geometries. However, each cell in
flP is mapped one-t~one to a unit cube in a logical
Space ~1,. The  vertices of the cells are at the locations
where the logical coordinates are all integers(See  Fig.
2). ‘l%e neighbor can be found by simply incrementing
indices.

Let r = (r,s, f) denote the the logical space coor-
dinates and x = (z, y, z) the physical space coordi-
nates. A simple tri-linear interpolation is used to map
the logical coordinates to the physical coordinates. For
instance, the mapping to the z coordinate inside cell
(i, j, k) is

x z ~O+xlr+xzs+ X~rs-tZ~i+Z~rt+~Gst+~7rst  (6)

where

x~ n Xi,j, k

Z1 = ~i+l,j,k —  Zi,j, k

Z2 = Xi,j+l, k — Xi,j,  k

X4 = Zi,j, k+l ‘“ ~i,j, k

x3 = xi+l,j+l,k i Zi,j,k –  Xi,j+l,k  -  Xi+l,j,k

Z5 = Xi+l,j,  k+l ‘} Zi,j,  k  —  Xi,j, k+l  -  ‘i+l,j,  k

26 = Xi,j+l,k+l  + Zi,j,  k – ~i,j,k+ 1  ‘“ ~i,j+l,k

r7 = ‘Ta,  j,k + Xi+l,j,  k ~ ~i,j+l, k ~ ‘i,j,k+l

‘~i+l,j+l,k —  ~i+l,j,  k+l —  ~i,j+l,  k+.]

+~i+l,j+l,k+l

‘1’hc mapping to the y and z coordinates is silnilar.

Electromagnetic Field Solve

l’he electromagnetic field portion of the code is based
on the algorithm of Gedncy and I,ansi1~g[1995], special-
ized to the case of a structured grid of hexahedral  CCIIS.
l’his  is a discrete volume generalization of the standard
I’inite- Difference ‘1’inle-Donlain (F DTIJ) algorithm and
reduces identically to FD1’D  if the grid is ortlLogonal.

l’his  algorithm uses a staggered grid systeulj  as illus-
trated ill Fig.3. For each CCII (primary cell), wc dcfille a
dual CCII with vertices all at half integers irt the logical
space. We shall call the prinlary  cell II grid a[ld dual

ds == o (5) CCII  E grid. “1’he fundamental variables that our code
calculates are II . ds (on each face of 13 grid cells) and

du ,:
!

J.ds E. ds (on each face of E cells). l’hesc  are the quantities
that have time derivatives specified on the left hand side
of Eqs. 4 and they appear in the constraint equations
Eqs. 5. q%e integrals in Eqs. 4 are taken to be over a
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sing\c face of a B or E cell, and in F,qs. 5 is taken  to
be an integral ovcl all six faces of a II or E cell. ‘1’lle
current J ds is co- located with F, ds. We locate 11. rll
on the edges of the E grid and they pass through faces
of the D grid. We locate E.dl on the edges of the LI grid
and they I)ass through the faces of the F, grid. When
the grid is Cartesian, the edges and the face normals
arc colinear;  and the grid systcnl  reduce to the familiar
Ycc lattice for Cartesian FD1’D codes [Ycc,1965].

We label each grid quantity with the logical coordi-
nates of its center, e.g. a cell is labeled by the coordi-
nates of its center and a B ds by the coordinates of the
face center. Vertices of the II grid and cells of the E
grid are integer triplets, and all other quantities have 1,
2 or 3 }lalf integer coordinates. Faces and face variables
must llavc a subscript 1, 2 or 3 for the logical coordinate
direction of the normal (replacing the x, y, z subscripts
in a Cartesian grid). Likewise, edges have a subscript of
1, 2, or 3 for the logical coordinate direction of the edge
vector. “1’hus  the B .ds  colnponent  in direction 1 located
on the face whose center  is at r = (i, j + 1/2, k + 1/2)
is labeled B dsl,i,j+l/?,~+l/z

lb map these quantities to array locations we simply
drop any half integers in the coordinates. For simplicity,
below we suppress the subscript on quantities that are at
location (i, j, k), and for quantities at nearby gridpoints
we include only the coordinates that are oflset. For
example we write F, . d13,i,j~ l,k a.s E d13,j + 1. With
this notation, the spatially discretized  curl Maxwell’s
equations are then:

can ul)datc  t}lc electrolllagnetic  field otlly using cq(7)
as long as tllc initial  condition satisfies 5. ‘1’he systenl
is then time discrctized  by staggering E and 11 by dt/2
and leapfrogging E and B over each c)ther  from eq(7)
with time step dt as in the standard FIW1) scheme.

Note that this  set of equation is not yet COI~lplCtC
until we specify how tllc edge quantities, the F, dl and
the B . dl, are determined from the E ds and the D
ds res~~cctively.  For a uniform orthogonal grid, ds and
dl arc parallel and we can calculate, for instance D .
dl = D . dsldll/ldsl, making Eqs. 4 a closed system.
‘1’hcrefore, tllerc  is no real distinction between face and
edge quantities. In this limit, the rt[cthod gives second
order accuracy in space. IIowcvcr, for nonorthogonal
coordinates, dl is not parallel to ds, and converting face
to edge quantities is more involved. ‘lb obtain II . dl at
a particular cell face, one needs first to find the the

values for D at the four vertices of the face from B . ds
and then do a volume weighted average dotted with
the dual edge vector. The technique to convert face
to edge quantities is due to Gedncy and Lansing[1995].
~1’his technique is also similar to tllc I)iscretc  Surface
Integral method of Madscn[1995].  ) Interested readers
arc referred to Karmesin  et al. [1996] and Gcdney and
1,ansing[1995] for a detailed discussion.

Fi[lally, once all the II . ds and E ds have been up
dated, wc also need to calculate tllc D and E at the
vertices of the primary grid, B.e, t and Eu,r~ because
13ue,f  and Eve.f are the field vectors used to push parti-
cles. 2’o calculate the fields at a vcttcx,  face quantities

d~B.  dsl =  E.d12,~~l  -E. d124E.  d13 --E .d13,j11 (II ~ ds and E . ds) adjacent to this vertex arc aver-

ct~Il ds2 =:
aged. I,’or each vertex, the calculatiotl  of llv,r~  involves

E  d13,i+l  – E, dkj + E “ dl] -- E ~ dll,~+llz ]~ . d~ alld that of E,, p,, involves  8 E ds .

dtB ds3 n E.dll,j+ l- E.dll+E. d12 --E dll,i}l
. .

dtE dsl I’article l’LIsh=  13. d12,k..1 - B . d12 -{ II  .  d1 3 - -  B d13,j. ~ -–---.-—

+J dsl (7) 1’I,c partic]c  push part includes interpolating fields

dtlt ds2 =- B d13,i. 1- B . d13 + B . dll -- B dli,k-~0 Particle  Positions (gather)> updating Particle  tra~cc-

+ J ds2

d~E ds3 v B.dll,j. l - Ildll+ B.d12 --13 dll,i.

+J ds3

IIy using tllc staggered grid, tllcsc cquatior~s will hold
automatically for the discretizecl field divergence collrli-
tions (cqs 5)

o  z ~dsl-ndsl,iil+~.d~z-
II d s2 , j + 1  +  11 (1s3 - B  ds3, ~+l (8)

~dV H E.dsl - E dsl,i. 1 -t E.d~2 -

E,ds2,j_1  -t E.ds3-E. ds3,k-1

‘1’herefore, if the particle push part of the code nlalrltaill
the charge conservatio~l  c.or~ditiox!  eq(3) rigorously, ol~e

~ories  (particle move), and depositing particle currents
(scatter). III our code, the particle I,ositioll is kept in
logical si)ace while the velocity is kept in physical space.
Settirlg  the lJarticles’ fundamental st,ape  and position in
logical space simplifies I)otli the force i]lteri)olation  and
the current deposit because the iuterl)olation  weights
arc si[nple linear fu[lctions of cacll logical coordinate.
\!rc keel) tlte particle velocity in physical s[,acc because
it is Ilecded for use in the calculat  iol) of the l,orentz
folcc and tllc current del~osit.

(~alhcr and Scatter

‘l’tie field i[~terpolation (gatllcr)  a[ld c urrcnt  deposit
(scatter) are done in logical space which is Cartesia~L.
‘1’lierefore,  the numerical schemes fb[ field i~ltcrpolation



,

and current deposit are exactly the same as that in a
flat grid  elec.tromagnctic  I’IC code (for instance, sec
Wang et al.[1995]).  In particular, the current deposit
is based on the charge conservation scheme discussed in
Villasenor and Iluneman[1992]  which satisfies the dis -
crctized charge conservation condition

dtpdV =  J.dsl– J.dsl,i+]+J”dsZ– (9)

J . ds2,j+l  + J “ dsa  -- J ~ dsa,~~l

rigorously. IIere pdV  is the total charge in a single cell
of the E grid and J . ds is the current crossing a face of
the E grid. l’he  current deposit is done by calculating
for each particle within a time step how rrmch charge
crosses each face of the E grid using the cells in logical
space.

Particle Move

l’he trajectory of each particle is integrated using a
time-centering leapfrog scheme for eq(l). From the ve-
locity in physical space v, the logical space position q
is readily obtained from

where

dr
—= R(r)v
dt

a(x, y,z)l_l
‘(r) = [ a(r’, S,q

(lo)

is the rotation matrix. (The physical location of the
particle can bc easily calculated from q using the geoni-
etry information for each cell. ) The numerical scheme
for particle move on non-orthogonal grid, which requires
a modification to the simple leapfrog update of x and v
for an orthogonal grid [Ilirdsall  and I,angdon,1985], is
as follows:
1. Identify particle location at step n in the logical space
and interpolate the field va}ue to the particle position
E ( rn ), B(m )

2. Update v in physical space: u = TV

3. Advatlce  r in the logical space with a predictor.
corrector scheInc:
3.1 calculate tile rotation matrix at r“, I<(r” )
3.2 predict r“+112:

r “i  1/2 =- r“ + R(r”) v“+ 112dt/2

3.3 calculate the rotation matrix at rn+ 1/2 : ~/(rn+l/2)

3.4 advance r a full ti[ne step:

r ‘+ 1 == rn + li(rn+l’2)  . vn+]’2dt

‘1’l~cre  are two ways to calculate R. One way is to
calculate lt at cacb vertex  once at Lhe star~ of the com-
putation and then interpolate R to the particle position
in the particle update using linear interpolation in log-
ical space. The other is to calculate R directly at the
particle position when needed.

3. Numerical Tests and Accuracy Analysis_—-— —————

Particle Push

We first test the particle push part of the code by colL-
sidering  single particle motions. A test case is shown in
Fig.4. In this test case, we consider a domain where the
z coordinate is deformed from its Cartesian grid loca-
tion by a sin(my)  and the y coordinate is defortncd by
a sin(mz)  (Fig.4a)  (where a == 2 and m = 8rr/1,)  There
is a constant background E field along the y direction,
EY, and a constant background B field along the z di-
rection, B.. Two charged particle trajectories in the
logical space and the physical space are shown in Fig-
ures. 4b and 4c, respectively. Fig.4c shows the correct
~ x f; drift of the particles in the physical space.

In an orthogonal grid PIC  code, the leapfrog scheme
for particle update has second order accuracy in time
and space. in the non-orthogonal grid PIG code, the
particle move algorithm involves transformation be-
tween the physical space and the logical space through
a rotation matrix. We next derive the accuracy of our
particle move scheme.

For simplicity, let’s consider a 2-dimensional domain
shown in Fig.5, where tbe y coordinate is deformed from
the Cartesian location by 6Y = a sin rrzz. Hence, the
discrete grids are

x(i, j) = ih (11)

y(i,  j )  = crsin(rnih))  -1 jh

where 11 is grid spacing (h = l,=/Nr, 1/= tile system
lcngt}l, Nz number of grid points). ??l~~ is the grid res~

] lution for a given distorted grid.

lion] eq(6),  the t ransformat ion between {lP and QI,
withi[l the (i, j) cell is

1== z’(i, j) +- r’tl (12)

Y= y(il~)  -1 ~(sin(?n(r’ -f 1)~~) - sin(r)~i}l))~  + s~l

where r,s E [0, 1]. hence the rotation matrix is

(13)

dy
>i = cr(sin(rn(i  + l)h) -- sin(rnr%))$ + h%
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~ ~ sin(mih)
–  a(mh cos(mih)  – m h -—--~ - -t—

dr ds
O(nrw))zi-  +- ha

in the limit of a continuous grid, h - ~ O, the grids are
given by

where <, q ~ (–co, cm). For a continuous grid, the rota-
tion matrix is simply

where < = ih -t 6. The difference between eq(14) and
eq(13)  is:

l’his  is the numerical error introduced by the rotation
matrix.

l’or a nulnericai  test, we consider a particle moving
uudcrno force field with an iuitial  velocity V=o along the
x direction in the domain shown in Fig5. Fig.6 shows
the xnaxirnum  spatial error as function of a for three

different grid resolutionsmh=  1,2, and4. Fig.7 shows
thecrror in theparticle’s  trajectory as a function of its
z position for different grid distortions ~, grid resolu-
tions mh,  and time steps vrodt/h. Irl agreement with
the above derivation, we find that the error is linearly
proportional to grid distortion, 6/h u O(Q), atld second
ordcrin thegrid resolution 6/h cx 0(7n2h2),  l’he spatial
error 6/h in the trajectory is independent of the time
step v=odt/h. We have done numerical testirlg  on other
smoothly distorted grids, and observed same accuracy
results.

Ilcnce,  for a non-orthogonal grid, ttle particle ]novc
scheme is still second order accurate irl time and space

tJ’7T07’  == 0(df2) + 0(run7h2  ) (16)

Field Solve

We next test the electromagnetic field solve part of
the code. When the grid is orthogonal, as discussed in

Section 2, the field solve reduces to the standard FDTI)
scllcrnc and has a second orclcr  convergence rate. When
the grid is non-orthogonal, we are unable to analyze
the accuracy of the field solve algorithm analytically.
Ilcnce,  we perform numerical tests to study this issue.

Wc consider the propagation of a plane electron~ag-
netic wave in a vacuum domain without plasma parti
cles. We consider a rectangular box domain with length
1,= = I.Y = 10 and L, = 20. The donlain  is initially
loaded with a plarle EM wave propagating along the
z direction with wave number kz = 2m/LZ.  Periodic
boundary condition is applied to all box surfaces.

l’hc physical domain is discretized into a grid with
NT, IVY and ~, grids in eac}l direction

*(i,  j, k) = ih + rr sirl(mzih)  sin(tnu  jh) sin(mz kh)

y(i, j,k) =  jh + ~ sin(mrih)  sin(mYjh)  sin(mzk(lly)

k(i, j,k) = kh + rr sin(n~zih)  sin(mY  jh) sin(mz kh)

where h = l.l/Nl and ml = 2Tr/Ll  (1 = z, y, z). A y-z
cutting plane of such a dclmain is shown in Fig.8.

Wc perform numerical tests under different grid reso-
lutions, h, and grid distortions, cr, and compare numer-
ical solutions with the analytical one. In the numerical
tests presented here, the following four sets of grid nu[n
hers (N= x NV x N.) are used: 8 x 8 x 16 (h == 1.25),
16 X 16 X 32 (h = 0.625), 32 X 32 X 64 (h = 0.3125)
and 64 x 64 x 128 (h = 0.1563). I?or grid distortion, we
consider a = 0.4, 0.8, and 1.2.

lrl Fig.9, we fix the grid distortion at cr = 1.2 a!Id
compare the total f’eld  energy for the four different grid

resolutions as a function of time. Analytically, the total
field energy is a constant at Ejld = 1000. For the 8 x
8 x 16 grids, the error in field energy is 61J/E\I~  N 0.02.
}Iowver, with 64 x 64 x 128 grids, there is little error in
f~jld.

SirIce the particle  push utilizes the field vectors at tl(e
vertices of the primary grid, F~V~rt and 13tic, t, to push
particles, wc next evaluate tile difference between t}le
non-zero analytical field component and the numerical
onc at the vertices of the ~]rimary grid. We use tlie
rnaxinm[n difference between the nu[ncrical  Itvert allcl
the analytical OIIC at the location with Itlaxirnurn  grid
distortion, Err, as a rneasrrre  of the nur~mica] error. lU
l’ig.10 we plot J;rr as a function of the grid resolutioil
h for all three  grid distortions as wwll as the ortlLog-
onal grid (rt = O). ‘1’hc error SILOWS  a second order
convergence (Ijrr w 0(h2)), for t}le ort}logonal  grid, as
expected. For the tl(rec norl-orthogona]  grids, our nu-
merical  tests show a convergence rate of Err cx O(}lP )
with 1.6< /3 < 1.85.
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‘J’he reduced accuracy in the field solve is clue to the
algorithms of calculating vertex quantites  (J3u .,-~ and
Euert ) and edge quantities (B . dl and E,. dl)  from face
quantities (II .ds  and E.ds). As discussed in Section 2, a
vertex quantity is obtained by averaging the face quan-
tities adjacent to the vertex, and an edge quantity of a
particular face is obtained by a averaging the face quan-
tit ies adj scent to that face. Because of this averaging,
for non-orthogonal grids the field solve gives a spatial
accuracy in between the first and second order. ~Ience,
in practical application, one should try to mininiize  the
regions of distortion to improve the overall accuracy of
the results. A direction for future work is to improve
the algorithms of converting the face quantities to edge
and vertex quantities.

The above results concern a grid distorted in all three
directions. Next we also run the same test case for a grid
distorted in two directions:

X(i, j,k) = ih + a sin(rnz ih) sin(~?~yjh)

y(i, j, k) = jh + asit~(~7z=ih)sin(l?lvjlI)

k(i, j,k) == kh

and a grid distorted only in one directions:

X(i, j,k) =  ih + o sin(m=ih)

Y(~,~,~) = ~~
k(i,  j,k) = kh

In Fig. 11 we compare Err as a function of h for the 1-
D, 2-D, and 3-D grid distortion case (with cr = 0.8) and
the no distortion case. For the l-I) and 2-D distortion
case, the results yield a much twtter accuracy than the
3-D distortion case. The accuracy of the 1-1) distortion
case is almost the same as that of the n-distortion case.
This is because in the 1-D and 2-D distortion case the
direction of spatial dependence of the solution, i.e. z,
is not distorted. l’his  suggests that one may also inl-
prove the overall accuracy by minimizing the distortion
of the grid in the direction of spatial dependence of t.lle
solution.

lM1)IC

Finally we test the entire 1’IC code. For this test, we
consider a counter streaming beaul  syste[l~:  two equal
electron beams arc set to c.cmrnter  strcatn  in tile x direct-
ion w’ith  drifting velocities Vd = +0.4c.  l’he electrons
within each beam follow a Maxwclliarl distrihutioll  with
tliermal  velocity vi == 0.05c. ‘1’~Le  iOIIS arc co[widcrcd
as a fixed background. This counter streaming systcln
generates the well-known  tw&strealn  instability

Again we consider a rectatlgular  box domain with d is-
torted  grids described by eq(l  7). Periodic boundary

conditions are applied to all surfaces. We take grid dis-
tortion to be a = 0.2 and grid resolution h = 1. In
Fig. 12 we plot electromagnetic field energy l;~l~, parti-
cle kinetic energy ljPd, f, and total energy in the system
EtOt as a function of time.  Fig.12 shows the correct
behavior of energy transfer between the particles and
the fields as a result of the instability excitation and
saturation, while ~;tot stays as constant as it should
be. In Fig.13 we compare Ef{d and $;Pa,~  for differ-
ent grid distortions, a = O, 0.1, and 0.2. In all the three
runs, the maximum fluctuation of the total energy is
r5E~ot/E*ot <0.015.

4. I’erformance  on a MIMD Parallel Computer——— —.— ————————.

q’hc parallel implementation of this 1’IC code is iden-
tical to that of our Cartesian grid based PIC  code [Wang
et al, 1995] The code is implemented using the General
Concurrent PIC  (GCPIC)  algorithm [I,iewcr and l)e-
cyk, 1989]. The algorithm uses spatial decompositions of
the physical domain to divide the computation among
parallel processors. Each processor is assigned a subd~
main and all the particles and grid points in it. When a
particle moves from one sub domain to another, it must
be passed to the appropriate processors, which requires
interprocessor  communication. Interprocessor  conmlu-
nic.ation is also necessary to exchange guard cell infor-
mation for current deposit and field solve. Interested
readers are referred to [Wang et al.,1995 and 1997] for
detailed discussioris on the parallel implementation of a
EM PIC code.

In this section, we present result from ru[lning this
code on the JI’1, CRA1’ T3D parallel supercomputer.
The CILAY 1’31) at J }’1, has 256 numerical nodes, each
with a ~nemory of 64 Mbytes (8 Mwords) and a peak
speed of 150 Mflops. Ilcnce,  the total memory size is
16.384 Gbytes  (2.048 (~words)  and tile total peak speed
38.4 Gflops.

‘J’o eva]rratc  the performance of the no~l-orthogonal
I;hl I’lC code, we run the code for the test case of tw~
streanl  instability described in the last  section. Wc mea-
sure tllc total loop tilllc per tiine  step 7~Of  as well as the
tinles sl)ent by each subroutine of the code for a series
of runs. Since eacl~ processor runs the code wittk slightly
different times, these times measured are the maximum
I)roccssor  tilnes  o[i a ~Jarallel COnl~JUtCr.

W C perform a scaled problcln  size analysis, i.e. kcep-
i[lg the problem size cm cacll processor fixed w)li)e in-
creasing the number of processors used. We load ttle
following problem: each processor has a cubic subdo-
nlain of 16 x 16 x 16 cells and 3.16 x 105 particles (~ 77
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particles/cell). ‘l’he problem size is scalecl up in three
dimensions. When this problem is loaded on all 256
nodes, the total problem size is 64 x 128 x 128 (1.05
million) cells and about 80.8 million particles. l’he run
times of this code as a function of the number of pr~
cessors  used, NP, are S11OWI1  in I>ig.14.  l~or comparison!
we also plot the results from running our Cartesian grid
EMPIC  code on the same figure.

Fig.14a shows  thetotal loop tinle,  TtO~, and thetitne
spent by the subroutines to trade particle and guard
cell lnformat  lon between processors, 7 CO”I”l. Since the
global conditions are applied wit}lin the sanlc subrou-
tines for iuterprocessor  communications, 7&,n, is the
sum of the time spent by the code on communications
and global boundary conditions. When the number of
processors used is much larger then one, 7&l,,l is dom-
inated by the interprocessor  communication time atld
hence it is a good measure of the parallel communica-
t ion cost.

We find, similar to the Cartesian grid F; M1’IC code,
7~Ot for the non-orthogonal grid PIC  code stay al~nost
constant as the number of processors is increased itl-
dicating a high parallel efficiency. 7~On,m,  only occu-
pies a negligible portion of 7~Ot. l’he  parallel efficiency,
~ R 1 –l\0,,,n,/7iOi, is about 0.96 and 0.98 for the Carte-
sian and non-orthogonal grid code, respectively.

Fig. 14b shows the times spent by the two stages of the
EMPIC  codes. We define the particle push ti[ne, ~~u~h,
as the sum of the times for moving particles, depositing
currents, applying boundary conditions, and related in-
terprocessor  communications, and the field solve ti[ne,
~jicld as tlIe sum of the times for updating the 14; and
11 fields, applying boundary conditions, and related in-
terprocessor  comniunicat ions [Wang et al., 1995]. For
the Cartesian grid code, we have !l)ti,h R 7.97s and
y)ield ~ 0.039s. While for the non-orthogonal grid
code, 7&U~k H 16s and ~)aeld H ().135s. }[ence, the over-
all computing speed of the llon-orthogonrtl  grid code is
about half of that of the Cartesian grid code. l’he par-
tiCle l)USh  time l)el particle  per time  step  q~U~h/~~[(rt
is 98.6ns for the Cartesian grid code and 198ns for
the nomortllogonal  grid code. Obviously the nom
orthogonal grid cc)de involves significantly Inore con~-
putations (tvhich also results in the slightly higher f.

5. Surnlllary and Conclusions

in physical space. ‘1’he particle prfsh algorithm calcu-
lates particle velocities in tllc plysical space but per-

forms particle tracing and grid-particle interpolations
in the logical space. ‘1’he field solve algorithm is an ex-
tension of the classical staggered mesh finite-difference
time-domain (FIY1’D)  to non-uniform meshes [Ged[lcy
and La[lsing,  1995] and reduces to tl~e standard FD1’1)
algorithm when the grid is Cartesian. The  parallel im-
plenlentation  of the code is almost idel[tical  to that of
the Cartesian-grid EMPIC  code [Wang et al.,1995] The
pcrfortnancc  of the code is evaluated on a 256-processor
CRAY 1’31).  It is shown that the code runs with a high
parallel efficiency of c > 96Y0.  IIowcver, since the no~l-
orthogonal grid code involves significantly more calcula-
tions, the speed of the non-orthogonal grid code is only
ahout a hal~ of that of the Cartesian grid code by Wang
et al[1995,1997].  Numerical experiments are performed
to test the accuracy of the code. Fc)r a distorted grid,
the accuracy for the particle push algorithm is second
order in time and space. I[owever,  while the classical
FIYf’1) algorithm has a second order accuracy in space,
the accuracy of the field solve algorithm is between first
and second order for non-orthogonal grids. Therefore,
the overall accuracy is restricted by that of the field
solve. l’or grids with large distortions, the field solve
algorithm may also become unstable after several thou-
sands time steps. An outstanding area of research is to
itnprove the accuracy of the electro~nagnetic  field solve
on distorted ]neshcs.
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Figure Captions

FiKure 1: Illustration of a cylindrical domain
strutted using deformable bexahedral  grids.

con-

Figure 2: lkansformation between logical space and
physical space

Figure 3: I,ocation  of electromagnetic field variables
on the grids.

Figure 4: I’article  push test: plasma particle ~ x ~
drift. a) I)istorted  grids in physical space: x is distorted
by a sin(my)  and y by a sin(mz); b) Particle orbits in
logical space; c) l’article  orbits in physical space.

Figure 5: A distorted grid used in particle push test:
z(i, j) = ih and y(i, j) = jh + crsin(rnih).

Figure 6: Maximum error in particle orbit. Grid res-
olutions: 171}1 = 1 (solid line); mh == 2 (dashed line);
and 17111 = 4 (dotted line).

F’igure 7: I,ocal error in particle orbit. a) a = 2,
volt/h = 0.1; b) a = 1, volt/h = 0.1; c) @ == 1, volt/h =
0.4. (Grid resolutions: mh = 1 (solid line); rnh = 2
(dashed line); and mh = 4 (dotted line) ).

Figure 8: A distorted grid used in field solve test and
PIC code test. The grid point at (x, y, z) is distorted
by crsin(2z-z) sin(2ry) sin(2rz).

Figure 9: Field solve test: propagation of plan elec-
tromagnetic wave. Total electromagnetic field energy.
lhe grid distortion is cr = 0.8. ‘I’he number of grid point
used are 8 x 8 x 16 (dashed line); 16 x 16 x 32 (dotted
line); 32 x 32 x 64 (dot-dashed line); al~d 64 x 64 x 1’28

(dot-dot-dashed line).

Figure  10: Error  in vertex E field, E..r ~, at locaticm
of maxinmm  grid distortion. Grid distortions a = O
(solid line); o = 0.4 (dashed line); a== 0.8 (solid line);
and a =: 1.2 (dot-dashed line).

Figure 11: Error in EU,. ~. No distortiorl  (solid line);
1-1) grid distortion (dashed line); 2-1) grid distortion
(dotted line); and 3-1) grid distortion (dot dashed line).
For all distorted grids, o = 0.8.

l~igui-e 12: I’lC code test: two-strcan(  instability. ~’~
tal cllcrgy,  field energy, and particle energy. Grid dis-
tortio]l o = 0.2. Grid resolution h = 1.

]Jigure 13: Comparison of the particle energy and field
energy for no grid distortion (solid line), distortion with
a == 0.1 (dashed line), and distortion with cr :: 0.2
(dashed  line).

Figure 14: Run times of a Cartesian grid EMPIC  code
(solid line) and the non-orthogonal grid EMPIC  code
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(dashed line) on a 256-processor (hay 131). a) ‘1’otal

loop time Yi.t and cornmullicatiorl/boundary  condition
time TCOmnl. b) Particle push time TP.,h and field SOIVe
time l“f;el~.
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a) IIistorted Grids in Physical Space
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b) Particle Orbit  in Logical Space
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